RBFOX3/NeuN is dispensable for visual function
نویسندگان
چکیده
RBFOX3/NeuN is a neuronal splicing regulator involved in neural circuitry balance, as well as neurogenesis and synaptogenesis. Rbfox3 is expressed in neurons; however, in the retina, expression is restricted to cells in the ganglion cell layer and some cells of the inner nuclear layer. Rbfox3 is expressed in a layer-specific manner in the retina, which implies a functional role, however, the role of RBFOX3 in the retina is unknown. Rbfox3 homozygous knockout (Rbfox3-/-) mice exhibit deficits in visual learning; therefore, understanding the role of RBFOX3 in the retina is critical for interpreting behavioral results. We found Rbfox3 expression was developmentally regulated in the retina and specifically expressed in ganglion cells, amacrine cells and horizontal cells of the retina. We demonstrate deletion of Rbfox3 resulted in a reduction in the thickness of the inner plexiform layer of the retina, where synapses are formed. Number of ganglion cells and amacrine cells is normal with loss of Rbfox3. Innervation of retinal ganglion cells into their targeted brain regions is normal in Rbfox3-/- mice. Importantly, Rbfox3-/- mice displayed normal non-image and image forming functions. Taken together, our results suggest RBFOX3 is dispensable for visual function.
منابع مشابه
NeuN/Rbfox3 Nuclear and Cytoplasmic Isoforms Differentially Regulate Alternative Splicing and Nonsense-Mediated Decay of Rbfox2
Anti-NeuN (Neuronal Nuclei) is a monoclonal antibody used extensively to specifically detect post-mitotic neurons. Anti-NeuN reactivity is predominantly nuclear; by western it detects multiple bands ranging in molecular weight from 45 kDa to >75 kDa. Expression screening putatively identified R3hdm2 as NeuN; however immunoprecipitation and mass spectrometry of the two major NeuN species at 45-5...
متن کاملNeuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis
Dysfunction of RBFOX3 has been identified in neurodevelopmental disorders such as autism spectrum disorder, cognitive impairments and epilepsy and a causal relationship with these diseases has been previously demonstrated with Rbfox3 homozygous knockout mice. Despite the importance of RBFOX3 during neurodevelopment, the function of RBFOX3 regarding neurogenesis and synaptogenesis remains unclea...
متن کاملRBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function
RBFOX3 mutations are linked to epilepsy and cognitive impairments, but the underlying pathophysiology of these disorders is poorly understood. Here we report replication of human symptoms in a mouse model with disrupted Rbfox3. Rbfox3 knockout mice displayed increased seizure susceptibility and decreased anxiety-related behaviors. Focusing on hippocampal phenotypes, we found Rbfox3 knockout mic...
متن کاملRbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development
Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cor...
متن کاملNeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker
The NeuN protein is localized in nuclei and perinuclear cytoplasm of most of the neurons in the central nervous system of mammals. Monoclonal antibodies to the NeuN protein have been actively used in the immunohistochemical research of neuronal differentiation to assess the functional state of neurons in norm and pathology for more than 20 years. Recently, NeuN antibodies have begun to be appli...
متن کامل